

	Heating Curve Calculations WS#1							
Specific heat of ice =		Heat of fusion =						
Sp	Specific heat of water =		Heat of vaporization =			S	Specific heat of ga	
	Direction	notebook u	hese problems or nderneath this ho each problem in Area of heating	andout. the follow	You may da	#13 on	-	eet.
		#	curve to use:	-	itions and u	U	in a box	
	For #1-6	use the follow	ving diagram:		1			
1) 2) 3)	kinetic er sample c As a subs (2), what between	nergy of the r luring section	hrough section he distance ?	Temperaturre (°C) 0 02 0		3 -0		
	happenir	ng during sec	tion (4)?		L		Time>	
4)	process h	uld be the no happening du ere going the	uring section (4)					
5)	What is th	ne melting po	oint of this substar	nce?				
6)	At what t	emperature	would this sample	e finish bo	oiling?			
7)	of heat er a. Heat t b. Melt th c. Heat t d. Boil the e. Heat t	hergy are neo he ice from - he ice he water fror e water he steam froi	H ₂ O with a mass o cessary to carry o 46°C to 0°C n 0°C to 100°C m 100°C to 109°C energy needed to	ut each s	step?			low m
8)	How much 100°C?	n energy is re	quired to conver	t 100 grai	ms of water	at 20°C	completely	[,] to ste
9)	What is the	heat <u>lost</u> wh	en you cool 125 g	g of wate	er into ice at	-3 °C\$		

Use the following graph to answer #13-17:

- 13) Label the graph with which areas are solid, liquid, and gas. Label where melting and boiling happen.
- 14) What is the melting temperature?
- 15) What is the boiling temperature?
- 16) If you had 15 grams of this substance, and the heat of fusion is 3.76 J/g, how many J of energy does it take to melt your sample?
- 17) If you have 15 g of this substance, and the specific heat of the liquid is 7.2 J/g°C, how many joules does it take to heat it up from 25°C to 85°C?

Use the following graph to answer # 18 - 21

- 18) What is happening to the average kinetic energy of the molecules in the sample during section 2?
- 19) As a substance goes through section(2), what happens to the distance between the particles?
- 20) What is the name of the process happening during section (4)?
- 21)What would be the name of the process happening during section(4) if time were going the other way?

22) What is the melting point of this substance?

- 23) At what temperature would this sample finish boiling?
- 24) When this substance is melting, the temperature of the ice-water mixture remains constant because:
 - a. Heat is not being absorbed
 - b. The ice is colder that the water
 - c. Heat energy is being converted to potential energy
 - d. Heat energy is being converted to kinetic energy
- 25) The temperature at which a substance in the liquid state freezes is the same as the temperature at which the substance
 - a. Melts
 - b. Sublimes
 - c. Boils
 - d. Condenses

26) Is this curve showing an endothermic or an exothermic process?